On the scaling of probability density functions with apparent power-law exponents less than unity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the scaling of probability density functions with apparent power-law exponents less than unity

We derive general properties of the finite-size scaling of probability density functions and show that when the apparent exponent τ̃ of a probability density is less than 1, the associated finite-size scaling ansatz has a scaling exponent τ equal to 1, provided that the fraction of events in the universal scaling part of the probability density function is non-vanishing in the thermodynamic limi...

متن کامل

the effect of traffic density on the accident externality from driving the case study of tehran

در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...

15 صفحه اول

Optimal power flow based on gray wolf optimization algorithm using probability density functions extraction considering wind power uncertainty

In recent years, utilization of the renewable based power plants has become widespread in the power systems. One of the most widely used renewable based power plants is wind power plants. Due to the utilization of wind energy to generate electricity, wind turbines have not emitted any environmental pollution. Thus, in addition to economic benefits, utilization of these power plants is of great ...

متن کامل

Power-law eigenvalue density, scaling, and critical random-matrix ensembles.

We consider a class of rotationally invariant unitary random matrix ensembles where the eigenvalue density falls off as an inverse power law. Under a scaling appropriate for such power-law densities (different from the scaling required in Gaussian random matrix ensembles), we calculate exactly the two-level kernel that determines all eigenvalue correlations. We show that such ensembles belong t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal B

سال: 2008

ISSN: 1434-6028,1434-6036

DOI: 10.1140/epjb/e2008-00173-2